Aspet

Differential Regulation of Prostaglandin $F_{2\alpha}$ Receptor Isoforms by Protein Kinase C

HIROMICHI FUJINO, DINESH SRINIVASAN, KRISTEN L. PIERCE, and JOHN W. REGAN

Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (H.F., D.S., J.W.R.); and Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina (K.L.P.)

Received July 14, 1999; accepted October 18, 1999

This paper is available online at http://www.molpharm.org

ABSTRACT

Prostaglandin $F_{2\alpha}$ receptors (FP) are G protein-coupled receptors that bind prostaglandin $F_{2\alpha}$ (PGF $_{2\alpha}$), resulting in the activation of an inositol phosphate (IP) second messenger pathway. Alternative mRNA splicing generates two FP receptor isoforms. These isoforms, designated FP $_{\rm A}$ and FP $_{\rm B}$, are otherwise identical except for their carboxyl termini. FP $_{\rm B}$ is essentially a truncated version of FP $_{\rm A}$ that lacks the 46 carboxyl-terminal amino acids, including four putative protein kinase C (PKC) phosphorylation sites. Until now, functional differences between these FP receptor isoforms have not been identified. We now report that pretreatment with the PKC inhibitor bisindolylmaleimide I enhanced PGF $_{2\alpha}$ -stimulated IP accumulation in transfected cells stably expressing the FP $_{\rm A}$ isoform but not in

cells stably expressing the FP_B isoform. Whole-cell phosphorylation experiments showed a strong agonist-dependent phosphorylation of the FP_A isoform but little or no phosphorylation of the FP_B. Pretreatment of cells with bisindolylmaleimide I decreased PGF_{2 α}-stimulated phosphorylation of the FP_A isoform consistent with a PKC-dependent phosphorylation. In vitro phosphorylation of an FP_A carboxyl-terminal fusion protein by recombinant PKC α showed that the carboxyl terminus of the FP_A is a substrate for PKC. These results suggest that PKC-dependent phosphorylation is responsible for differential regulation of second messenger signaling by FP prostanoid receptor isoforms.

Neurotransmitter and hormonal signaling through G protein-coupled receptors (GPCR) is a major mechanism of intercellular communication. In addition to activating second-messenger pathways, the agonist-induced activation of GPCRs may induce a state of diminished agonist responsiveness known as desensitization. Phosphorylation of GPCRs by regulatory kinases has often been implicated in desensitization in which the phosphorylated receptor becomes uncoupled from its cognate G protein and/or is internalized. Kinases that have been shown to be involved in GPCR desensitization include cAMP-dependent protein kinase, calcium-dependent protein kinase (PKC), and GPCR kinase (GRK) (Freedman and Lefkowitz, 1996).

Given the diversity of GPCRs, it is not surprising that there is considerable variation in the regulation of GPCRs by kinases and that for many GPCRs, the details of their kinasedependent regulation are unknown. Among the subfamily of prostanoid receptors, for example, there is little known either about their desensitization or about the kinases that might

receptors (EP, DP, FP, IP and TP) that correspond to the five major prostanoid metabolites [prostaglandins E_2 , D_2 , $F_{2\alpha}$ (PGF $_{2\alpha}$), prostacyclin, and thromboxane A_2 , respectively]. To date, only the TP and IP receptors have been shown to undergo agonist-dependent phosphorylation (Habib et al., 1997; Smyth et al., 1998). In the case of TP receptors, a GRK may be involved, whereas PKC is important for phosphorylation of both TP and IP receptors.

be involved. There are five major subtypes of prostanoid

FP prostanoid receptors are GPCRs that bind endogenous $PGF_{2\alpha}$, resulting in the activation of an inositol phosphate (IP) second-messenger pathway. Previously, we cloned an alternative mRNA splice variant of the FP receptor (termed FP_B) from an ovine large-cell corpus luteum library (Pierce et al., 1997). This FP_B receptor isoform is identical with the original FP receptor (termed FP_A) throughout its entire amino acid sequence except for the carboxyl terminus. Thus, the first nine amino acids of the carboxyl terminus are identical, but then the FP_A isoform continues for another 46 amino acids, whereas FP_B terminates after one. Essentially, therefore, FP_B represents a truncated isoform of FP_A . Functionally, both isoforms have similar pharmacological profiles

ABBREVIATIONS: GPCR, G protein-coupled receptor; PKC, protein kinase C; GRK, G protein-coupled receptor kinase; $PGF_{2\alpha}$, prostaglandin $F_{2\alpha}$; IP, inositol phosphate; HEK, human embryonic kidney; TMX, thymeleatoxin; BIM, bisindolylmaleimide I; DMEM, Dulbecco's modified Eagle's medium; GST, glutathione-S-transferase; PCR, polymerase chain reaction; HA, hemagglutinin; RIPA, radioimmunoprecipitation assay; PAGE, polyacrylamide gel electrophoresis; PLC, phospholipase C; PMA, phorbol 12-myristate 13-acetate.

Supported in part by National Institutes of Health Grant EY11291 and grants from Allergan Inc. K.L.P. was supported by an individual predoctoral fellowship from the National Science Foundation.

and stimulate IP accumulation to a similar extent (Pierce et al., 1997). To elucidate possible differences in signal transduction and/or regulation, the FP_A and FP_B receptor isoforms were stably expressed in human embryonic kidney (HEK) cells. We now report differential regulation of these isoforms by PKC. Thus, PKC inhibits $PGF_{2\alpha}$ -stimulated IP formation by the FP_A isoform but not by the FP_B isoform. In addition the FP_A isoform, but not FP_B , showed robust agonist dependent phosphorylation that was mediated by PKC, and an FP_A carboxyl-terminal fusion protein could be directly phosphorylated by PKC α .

Experimental Procedures

Materials. Human recombinant protein kinase $C\alpha$, 1-oleoyl-2-acetyl-sn-glycerol, thymeleatoxin (TMX) and bisindolylmaleimide I (BIM) were obtained from Calbiochem (San Diego, CA). Histone type III-SS, ATP, L-α-phosphatidyl-L-serine, lithium chloride, HEPES, FLAG-M2 affinity gel, and BSA were from Sigma Chemical (St. Louis, MO), and PGF $_{2\alpha}$ was obtained from Cayman Chemical Co. (Ann Arbor, MI). Dulbecco's modified Eagle's medium (DMEM), phosphate-free DMEM, hygromycin B, geneticin and gentamicin reagent solution were from Life Technologies/BRL (Gaithersburg, MD). Dowex AG1-X8 anion exchange resin was obtained from Bio-Rad (Hercules, CA). myo-[2-³H]Inositol (1 mCi/ml) and [γ -³²P]ATP (10 mCi/ml) were from Amersham Corp. (Arlington Heights, IL). A glutathione-S-transferase (GST)/FP_A carboxyl terminal fusion protein was prepared as described previously (Anthony et al., 1998).

Preparation of Cells Stably Expressing the FP_A and FP_B Isoforms. HEK cells (293-EBNA; Invitrogen, Carlsbad, CA) stably expressing either the ovine FPA or FPB receptor isoforms were prepared as follows. cDNA encoding either the FPA isoform (Graves et al., 1995) or the FP_B isoform (Pierce et al., 1997) was subcloned into the XhoI/NotI sites of pCEP4 (Invitrogen) to yield the plasmids pCEP4/FP_A and pCEP4/FP_B. For each plasmid, 20 µg of cesiumpurified plasmid DNA was used to transfect one 10-cm plate of HEK cells using the calcium phosphate method with glycerol shock. Two days after transfection, the cells were treated with 200 µg/ml of hygromycin B; approximately 8 days later, hygromycin B-resistant clones were individually selected and transferred to 24-well plates. After reaching confluence, the cells were transferred to 6-well plates and further expanded to 10-cm plates. Cells were maintained at 37°C with 5% CO₂/95% air and in DMEM containing 10% fetal bovine serum, 250 µg/ml geneticin, 200 µg/ml of hygromycin B, and 100 μg/ml gentamicin.

Preparation of FLAG-Tagged Ovine FPA and FPB Receptor **Isoforms.** FLAG epitopes were introduced into the amino termini of the ovine FP_A and FP_B receptor isoforms by a two-step polymerase chain reaction (PCR) followed by a triple ligation reaction. In the first PCR, using the ovine FPA as a template, a product was generated using a sense primer [5'-ATC TTC TGC CTG GTG TTC GCC GAC TAC AAG GAC GAT GAT GAC GCT AGC ACG AAC AAT TCT GTA CAG-3' (underlining shows the FLAG epitope sequence)] encoding the FLAG epitope, part of a hemagglutinin (HA) signal sequence, and the amino terminus of the ovine FP_A (nucleotides 106– 123; Pierce et al., 1997); and an antisense primer [5'-GGT CCT TGA AGC TTG AAT TTT-3' (underlining shows *HindIII* site)] containing a unique HindIII site from nucleotides 631-651 of the ovine FPA. This first product was resolved by agarose gel electrophoresis and purified using Geneclean (Bio101, Vista, CA). It was then used as the template in a second PCR with the same antisense primer as before and a new sense primer [5'-CC CTG CAG GCC ACC ATG AAG ACC ATC ATC GCC CTG AGC TAC ATC TTC TGC CTG GTG TTC GCC-3' (underlining shows PstI site; bold and underlining show the initiator methionine and start of the HA signal sequence)] that partially overlapped the previous sense primer and encoded the rest of the HA signal sequence, a Kozak consensus sequence, and a unique *Pst*I site. Both reactions were done using Deep Vent DNA polymerase (Boehringer Mannheim, Mannheim, Germany) with the following thermocycler conditions: after an initial denaturation for 8 min at 99°C, the samples were subjected to 40 cycles consisting of 1 min at 99°C, 1 min at 55°C, and 1 min at 75°C, followed by a final extension for 7 min at 75°C.

The product of the second PCR reaction was then used in a threeway ligation to yield the final FLAG-tagged FP_A and FP_B constructs as follows. The second PCR product was purified as before and was digested with HindIII and PstI and repurified. The ovine FP in pBluescript KS(+) was digested with HindIII and EcoRI and the smaller fragment encoding the 3' end of the FPA was purified (nucleotides 639-1710; Pierce et al., 1997). A modified pBluescript KS(+)in which the HindIII site was previously removed was digested with PstI and EcoRI and the 2.9-kilobase plasmid backbone was purified. These three fragments were then ligated together using a rapid ligation kit (Boehringer Mannheim) and were then used to transform DH5- α cells (Life Technologies-BRL). Plasmids encoding the FLAGtagged FPA (FPA-FLAG/KS+) were identified by mini-prep and restriction enzyme analysis. Plasmids encoding the FLAG-tagged FP_B $(\mbox{FP}_{\mbox{\footnotesize{B}}}\mbox{-FLAG/KS}+)$ were prepared in an identical manner using the product obtained from a HindIII/EcoRI digestion of the ovine FP_B in pBluescript KS(+) (nucleotides 639-1430; Pierce et al., 1997). The final constructs were verified by DNA sequencing.

HEK cells stably expressing the FLAG-tagged FP_A and FP_B isoforms were prepared as described above for the non–FLAG-tagged isoforms. Briefly, the FLAG-tagged FP_A and FP_B isoforms in pBluescript KS(+) were digested with NotI and XhoI and were subcloned sequentially into the corresponding sites in pCDNA3 and then pCEP4. The constructs in pCEP4 were used to transfect HEK cells and positive clones were selected by hygromycin resistance and limiting dilution. Expression of the FLAG epitope was verified by immunofluorescence microscopy using the FLAG-M2 monoclonal antibody. Functionality of the receptors was confirmed by radioligand binding and agonist stimulated IP formation.

Inositol Phosphates (IP) Assay. Receptor stimulated total IP accumulation was determined by anion exchange chromatography in cells that were preincubated with *myo*-[2-3H]inositol (Anthony et al., 1998). Cells were plated in 10-cm dishes (10⁷ cells/dish) in DMEM with 10% fetal bovine serum, and incubated overnight with 3 μCi/ml myo-[2-3H]inositol. Cells were trypsinized and centrifuged, and aliquots of 0.5 to 1.0×10^7 cells were resuspended in 500 μ l of DMEM containing 10 mM LiCl. After drug additions, the cells were incubated for 1 h at 37°C and 2.5 ml of chloroform/methanol/water (1:1:0.5) was added. Nine hundred microliters of the aqueous phase was removed and mixed with 2 ml of water and applied to a 2.5-ml column of AG1-X8 anion exchange resin. After three washes with 5 ml of water and two washes with 5 ml of 5 mM borax/60 mM sodium formate buffer, the ³H-labeled IPs were eluted with 2 ml of 0.2 M ammonium formate/0.1 M formic acid and radioactivity was determined by liquid scintillation counting.

In Vivo Phosphorylation Assay. Ten-centimeter plates (\sim 2.0 \times 10⁷ cells) of HEK cells stably expressing the FLAG-tagged FP_A and FP_B receptors were washed twice in phosphate-free DMEM and incubated with 5 ml of phosphate-free DMEM (without serum) containing 10 mM HEPES, pH 7.4, and 0.1% BSA for 16 h at 37°C. After aspirating the media, cells were incubated at 37°C for 1 h in 2 ml of phosphate-free DMEM containing 200 μCi of [³²P]orthophosphate. The cells were then incubated for 5 min at 37°C with either vehicle or drugs and washed twice with ice-cold PBS containing Ca²⁺ and Mg²⁺. Cells were scraped with 1 ml of radioimmunoprecipitation assay (RIPA) buffer and were transferred to microfuge tubes. The RIPA buffer consisted of 150 mM NaCl, 50 mM Tris·HCl, pH 8.0, 5 mM EDTA, pH 8.0, 1% Nonidet P-40, 0.5% sodium deoxycholate, 10 mM NaF, 10 mM disodium pyrophosphate, 0.1% SDS, 0.1 mM phenylmethylsulfonyl fluoride, 1 mM Na₃VO₄, 10 μg/ml of leupeptin, and 10 µg/ml of aprotinin. The samples were rotated for 2 h at 4°C and were centrifuged at 16,000g for 15 min. The equivalent of 2 mg

Downloaded from molpharm.aspetjournals.org by guest on December 1, 2012

of protein from the supernatant was immunoprecipitated with 20 μl of FLAG-M2 antibody-affinity gel for 16 h at 4°C. The affinity gel was washed three times each with 1 ml of the RIPA buffer (without protease inhibitors) and was then mixed with 30 μl of Laemmli buffer. The samples were incubated at 65°C for 15 min and were subjected to SDS-polyacrylamide gel electrophoresis (PAGE). Gels were dried for 2 h at 80°C and autoradiographs were obtained after a 3- to 5-day exposure at -80°C.

In Vitro Phosphorylation Assay. Proteins were mixed in a reaction solution consisting of 20 mM HEPES, pH 7.4, 100 μ M CaCl₂, 10 mM MgCl₂, 100 μ M ATP, 100 μ g/ml phosphatidylserine, 50 μ g/ml 1-oleoyl-2-acetyl-sn-glycerol and 0.03% Triton X-100. Five microliters of recombinant PKC α (1 ng/ μ l) and 0.1 μ l of [γ -³²P]ATP (10 mCi/ml) were then added to give a final volume of 100 μ l and were incubated at 30°C for 10 min. The samples were precipitated with 20 μ l of 1% BSA and 1 ml of 10% trichloroacetic acid. After a 5-min incubation on ice, the samples were centrifuged in a microfuge at maximal speed for 10 min, washed three times with acetone, and subjected to electrophoresis through a 10% SDS-polyacrylamide gel. Phosphorylated products were visualized by autoradiography using Kodak X-OMAT AR film (Eastman Kodak, Rochester, NY).

Results

Inhibition of PKC Enhances $PGF_{2\alpha}$ Stimulated IP Formation in FPA-Expressing Cells but Inhibits in FP_B-Expressing Cells. HEK cells stably expressing the ovine FPA and FPB prostanoid receptors were prepared as described under Experimental Procedures and used for the characterization of the signal transduction properties of these isoforms. Cell lines were selected that had comparable levels of expression based on the whole-cell radioligand binding of [${}^{3}H$]PGF_{2 α} (FP_A, 3.55 \pm 0.28 pmol/mg protein; FP_B, 4.09 ± 0.49 pmol/mg protein). Agonist-stimulated IP accumulation in these cell lines was examined under control conditions or after inhibition of PKC by BIM. Figure 1, A and B, shows that $PGF_{2\alpha}$ stimulated IP accumulation to the same maximal level and with a similar EC₅₀ value in both the FP_Aand FP_B -expressing cells (12 nM and 19 nM for the FP_A and FP_B, respectively). After a 5-min pretreatment with BIM, however, the EC₅₀ value for PGF₂₀-stimulated IP accumulation in FP_A-expressing cells (Fig. 1A) was shifted to the left $(EC_{50}, 6.9 \text{ nM})$. In contrast, the EC_{50} value in FP_B -expressing cells (Fig. 1B) was shifted to the right (EC₅₀, 27 nM) and there was an approximately 20% decrease in maximal IP accumulation. Although this leftward shift of the EC₅₀ values for PGF22-stimulated IP accumulation in BIM-treated FPA cells was small, it was maximal at physiological concentrations of PGF_{2\alpha} (e.g., 1–10 nM) and it was very reproducible (Figs. 1-3). Likewise, the inhibition observed in BIM-treated FP_B cells was very consistent.

The differential effect of PKC inhibition on the FP_A and FP_B receptor isoforms was further characterized by stimulation of IP accumulation with a fixed concentration of $PGF_{2\alpha}$ (10 nM) after pretreatment of the cells with several concentrations of BIM. Figure 2 again shows that IP accumulation was enhanced in FP_A cells treated with 1 μM and 10 μM BIM, whereas in FP_B cells, BIM either had no effect or inhibited $PGF_{2\alpha}$ -stimulated IP accumulation. This series of experiments was repeated with another inhibitor of PKC (Go 6976) with virtually identical results (data not shown).

Activation of PKC Inhibits $PGF_{2\alpha}$ -Stimulated IP Formation in Both FP_A - and FP_B -Expressing Cells. Because inhibition of PKC enhanced $PGF_{2\alpha}$ -stimulated IP formation

in FP_A-expressing cells but not in FP_B-expressing cells, we hypothesized that the additional carboxyl terminal sequence present in the FP_A isoform contained potential inhibitory PKC phosphorylation sites. To test this, PKC was activated with several concentrations of TMX and PGF_{2α}-mediated IP accumulation was examined in the presence and absence of BIM. Figure 3A shows that in cells expressing the FP_A isoform, TMX produced a dose-dependent inhibition of PGF_{2a}stimulated IP accumulation that could be reversed by simulwith pretreatment BIM. Unexpectedly, taneous pretreatment with TMX also inhibited PGF_{2\alpha}-stimulated IP accumulation in FP_B-expressing cells (Fig. 3B), which suggests that activation of PKC may inhibit agonist-stimulated IP formation by both FP receptor isoforms. Figure 3C, however, shows that in control (untransfected) HEK cells, TMX produced a clear dose-dependent inhibition of basal IP formation that could be reversed by simultaneous pretreatment with BIM. This strongly suggests that activation of PKC by TMX inhibits phospholipase C (PLC) activity and that the effects of PKC activation on the FP_A and FP_B isoforms occurs through inhibition of PLC rather than by a direct effect on the receptors. Nearly identical results were obtained in similar experiments using phorbol 12-myristate 13-acetate (PMA) (data not shown).

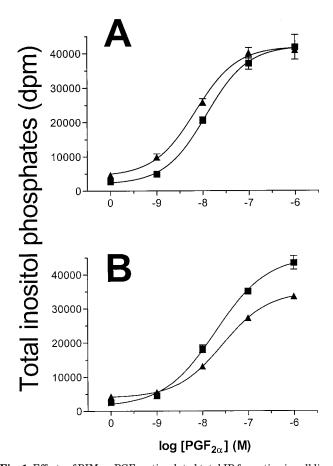


Fig. 1. Effects of BIM on $PGF_{2\alpha}$ -stimulated total IP formation in cell lines stably expressing the FP_A or FP_B prostanoid receptor isoforms. HEK 293 cells stably expressing the FP_A receptor (A) or FP_B receptor (B) were pretreated with either vehicle (\blacksquare) or 10 μ M BIM (\blacktriangle) for 5 min before treatment with the indicated concentrations of $PGF_{2\alpha}$ for 60 min. Total [3 H]inositol phosphates were determined as described under *Experimental Procedures*. Data are the means \pm S. D. of one of three independent experiments each performed in duplicate.

In Vivo Phosphorylation of the FP_A and FP_B Isoforms. Cell lines stably expressing recombinant FPA and FP_B receptor isoforms containing FLAG epitopes were prepared as described under Experimental Procedures to directly examine agonist-dependent phosphorylation of these receptors. Cell lines were selected that had comparable levels of expression, both with each other and with the wild-type FP_Aand FP_B-expressing cells, based on agonist stimulated IP formation and on the radioligand binding (e.g., FP_A , 3.56 \pm 0.04 pmol/mg protein; FP_B , 2.15 \pm 0.17 pmol/mg protein). Phosphorylation of the receptors was examined in whole cells that had been radiolabeled with [32P]orthophosphate followed by immunoprecipitation of the receptors with an anti-FLAG antibody as described under Experimental Procedures. Figure 4 shows the effects of increasing concentrations of $\mathrm{PGF}_{2\alpha}$ on the incorporation of $^{32}\mathrm{P}$ into the FLAG-tagged FP_{A} and FP_B receptor isoforms. Although the FP_A isoform clearly showed a dose-dependent increase in phosphorylation that appeared maximal at 1 μ M PGF_{2 α}, agonist-dependent phosphorylation of the FP_B was nearly absent. To examine the possibility that this phosphorylation was PKC-dependent, cells were pretreated with 10 µM BIM and then stimulated with 1 μ M PGF_{2 α}. Figure 5 again shows the strong agonistdependent phosphorylation of the FPA isoform compared with the FP_B and it shows that pretreatment with BIM significantly decreased phosphorylation of the FP_A in response to stimulation with $PGF_{2\alpha}$. For the FP_B isoform, it seems that there may be a low level of agonist-dependent phosphorylation that is decreased to background levels by pretreatment with BIM.

In Vitro Phosphorylation of a GST/FP_A Carboxyl Terminal Fusion Protein. To examine the potential of the carboxyl terminus of the FP_A to serve as a substrate for PKC, an in vitro phosphorylation experiment was performed using recombinant PKC α and a GST fusion protein containing the 46 amino acids present in the carboxyl terminus of the FP_A that are absent in the FP_B. Figure 6 shows that after a 10-min incubation at 30°C, PKC α directly phosphorylated

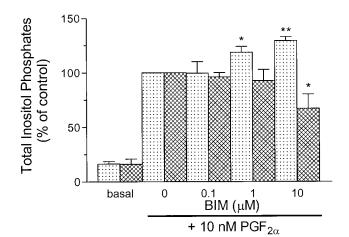


Fig. 2. Effects of increasing concentrations of BIM on total IP formation induced by 10 nM PGF $_{2\alpha}$ in cells stably expressing the FP $_{\rm A}$ (\blacksquare) or the FP $_{\rm B}$ (\blacksquare) prostanoid receptor isoforms. Cells were pretreated with the indicated concentrations of BIM for 5 min before treatment with vehicle (basal) or 10 nM PGF $_{2\alpha}$ for 60 min. Total $^3\text{H-labeled IPs}$ were determined as described under Experimental Procedures. Data are the means \pm S.D. of three independent experiments each performed in duplicate. The asterisks indicate significant differences from 0 μ M BIM (ANOVA; * p<.05; ** p<.01).

the GST/FP_A carboxyl terminal fusion protein (Fig. 6, lane 2) but not GST itself (Fig. 6, lane 3). PKC α also phosphorylated histone (Fig. 6, lane 4), which served as a positive control.

Discussion

Previously, we reported the cloning of a novel alternative mRNA splice variant of the ovine FP prostanoid receptor that we defined as $FP_{\rm B}$ (Pierce et al., 1997). This $FP_{\rm B}$ isoform differed from the previously cloned isoform (defined as $FP_{\rm A}$) in that it lacked the carboxyl terminal 46 amino acids of $FP_{\rm A}$;

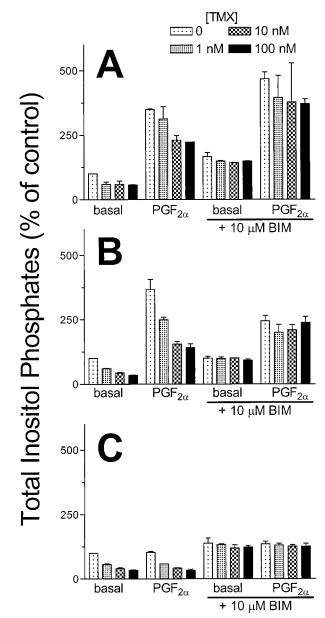
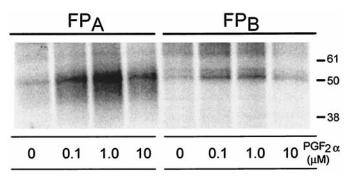
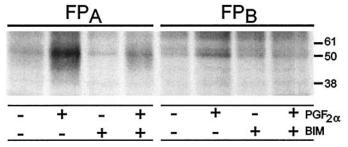



Fig. 3. Effects of increasing concentrations of TMX in the presence and absence of 10 $\mu\rm M$ BIM on PGF $_{2\alpha}$ -stimulated IP formation in cells stably expressing the FP $_{\rm A}$ and FP $_{\rm B}$ prostanoid receptor isoforms (A and B, respectively) or in control (untransfected) HEK cells (C). Where indicated, cells were pretreated with 10 $\mu\rm M$ BIM for 5 min, followed by pretreatment with the indicated concentrations of TMX for 20 min, and were then stimulated with either vehicle alone (basal) or 10 nM PGF $_{2\alpha}$ for 60 min. Total $^3\rm H$ -labeled IPs were determined as described under Experimental Procedures. Data are the means \pm S.D. of one of three independent experiments each performed in duplicate.


Downloaded from molpharm.aspetjournals.org by guest on December 1, 2012

therefore, it represented essentially a truncated form of FP_A . Heretofore, functional differences between these isoforms were unknown, but we now report that FP_A is preferentially phosphorylated by PKC and, in contrast to the FP_B isoform, which is unaffected, FP_A is subject to a rapid negative feedback by PKC.

Cell lines stably expressing the ovine FPA and FPB receptors were prepared to study possible functional differences between these isoforms. Two cell lines were selected that had comparable levels of expression as judged by radioligand binding and by PGF_{2\alpha}-stimulated IP accumulation. Both of the receptor isoforms shared a similar level of maximal IP formation and similar EC_{50} values for $PGF_{2\alpha}$. Interestingly, when these cells were treated with the PKC inhibitors BIM or Go 6976, there was a shift to the left in the dose-response curve for PGF_{2\alpha}-timulated IP formation in cells expressing the FP_A isoform but not in cells expressing the FP_B isoform. A possible explanation for this differential sensitivity is the presence of potential PKC phosphorylation sites in the 46 amino acids that are unique to the FPA isoform. Analysis of this domain shows four consensus sites for PKC phosphorylation at residues 319 (T), 337 (S), 341 (S), and 353 (T). Our findings with whole cells showing PKC-dependent phosphorylation of the FPA isoform, combined with the results showing in vitro phosphorylation of a carboxyl terminal FPA fu-

Fig. 4. PGF $_{2\alpha}$ -induced phosphorylation of FLAG-tagged FP $_{\rm A}$ and FP $_{\rm B}$ prostanoid receptors. Cells stably expressing the FP $_{\rm A}$ and FP $_{\rm B}$ isoforms were prelabeled with $^{32}{\rm P}$ and were stimulated with the indicated concentrations of PGF $_{2\alpha}$ for 5 min at 37°C. This was followed by immunoprecipitation with an anti-FLAG affinity gel, SDS-PAGE, and autoradiography as described under *Experimental Procedures*. Positions of molecular mass markers are indicated on the right in kiloDaltons.

Fig. 5. The effects of BIM on PGF $_{2\alpha}$ -induced phosphorylation of FLAG-tagged FP $_{\rm A}$ and FP $_{\rm B}$ prostanoid receptors. Cells stably expressing the FP $_{\rm A}$ and FP $_{\rm B}$ isoforms were prelabeled with $^{32}{\rm P}$ and were either not stimulated (–) or were stimulated (+) with 1 $\mu{\rm M}$ PGF $_{2\alpha}$ either in the absence (–) or presence (+) of 10 $\mu{\rm M}$ BIM. This was followed by immunoprecipitation with an anti-FLAG affinity gel, SDS-PAGE, and autoradiography as described under <code>Experimental Procedures</code>. The positions of three of the molecular mass markers are indicated on the right in kilo-Daltons. The results are representative of three independent experiments.

sion protein by recombinant PKC α , strongly suggest that one or more of these sites are phosphorylated in vivo.

Given that inhibition of PKC enhanced PGF₂₀-stimulated IP accumulation in FP_A-expressing cells, we speculated that activation of PKC would selectively inhibit $\mathrm{PGF}_{2\alpha}\text{-stimulated}$ IP formation in FP_A-expressing cells but not in FP_B-expressing cells. Contrary to expectations, however, pretreating cells with either TMX or PMA inhibited IP accumulation in both FP_A- and FP_B-expressing cells. There are a couple of possible explanations for this. One is that there are additional PKC phosphorylation sites in the common region of these receptors; a second is that stimulation of PKC down-regulates another component of the IP second-messenger pathway. As it concerns the first possibility, there are two additional PKC consensus sites in the second intracellular loop of these FP receptor isoforms. It is possible that phosphorylation of these common sites by a strong stimulus, such as TMX or PMA, could inhibit the activity of these receptors. The possibility of PKC-mediated down-regulation of another component of the IP pathway is more likely, however, as suggested by the results obtained in untransfected HEK cells. In these cells, TMX pretreatment caused a clear dose-dependent decrease in basal IP accumulation that was reversed by simultaneous pretreatment with BIM. This is essentially the same pattern observed in the FPA- and FPB-transfected cells, which implies that another component of the signaling pathway, such as Gq or PLC is inhibited. In fact, previous studies have shown that PLC β 1 is phosphorylated by PKC (Ryu et al., 1990) and that phosphorylation of PLCβ3 by PKC inhibits platelet-activating-factor-stimulated IP accumulation (Ali et al., 1997).

The involvement of cytoplasmic carboxyl terminal domains in the regulation of GPCR signaling and desensitization is well established. It seems that several members of the prostanoid receptor family have exploited this in the form of alternative mRNA splicing to create receptor isoforms that have common amino terminal and transmembrane domains, but divergent carboxyl termini. Thus, thirteen carboxyl terminal isoforms of the EP $_3$ receptor may exist, as well as two isoforms of the TP receptors and two of the FP receptors

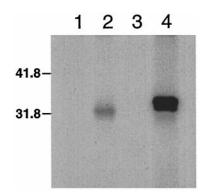


Fig. 6. In vitro phosphorylation of a GST/FP_A-carboxyl terminal fusion protein by recombinant PKCα. Phosphorylation reactions were conducted with $[\gamma^{-32}P]$ ATP as described under Experimental Procedures using recombinant PKCα alone (lane 1), recombinant PKCα plus a GST/FP_A carboxyl terminal fusion protein (lane 2), GST (lane 3), or histone (lane 4). This is the autoradiograph obtained after SDS-PAGE. The positions of two of the molecular mass markers are indicated on the left in kiloDaltons. The predicted Mr of the GST/FP_A carboxyl terminal fusion protein and GST are 31.6 and 26.5, respectively. The results are representative of three independent experiments.

(Pierce and Regan, 1998). In all of these isoforms, the alternative splicing occurs at a conserved splice site that is approximately nine amino acids from the end of the seventh transmembrane domain. In the case of the EP $_3$ receptor isoforms, the divergent carboxyl termini give rise to differences in G protein coupling and desensitization. For example, studies with the mouse EP $_{3\alpha}$ and EP $_{3\beta}$ isoforms show that the EP $_{3\alpha}$ isoform undergoes rapid desensitization, whereas the EP $_{3\beta}$ isoform does not (Negishi et al., 1993). In the case of the TP receptor isoforms, the divergent carboxyl termini have been shown to affect coupling to adenylyl cyclase (Hirata et al., 1996), and recently it has been found that the TP $_{\beta}$ isoform, which has a longer carboxyl terminus, undergoes agonist-promoted internalization, whereas the TP $_{\alpha}$ isoform does not (Parent et al., 1999).

The present findings with the FP receptor isoforms indicate that the unique carboxyl terminal domain of the FP_A provides for a rapid negative feedback by PKC that most probably involves phosphorylation of its carboxyl terminus by PKC. This essentially represents a rapid desensitization that makes both isoforms equally responsive to $PGF_{2\alpha}$ under the conditions of the present IP assay or after heterologous activation of PKC, for example by TMX or PMA. One could imagine, however, that under conditions of acute activation or in situations in which PKC becomes down-regulated, the FP_A isoform might be more responsive than the FP_B isoform to submaximally stimulating concentrations of agonist.

Recently, it has been shown that agonist-induced desensitization of both the TP receptor (Spurney, 1998) and the IP receptor (Smyth et al., 1998) seems to involve phosphorylation by PKC in the carboxyl terminal domains of these receptors. Thus IP receptors in which the PKC consensus sites were mutated showed impaired desensitization, and a carboxyl terminal deletion mutant did not desensitize at all. Likewise, mutation of carboxyl terminal PKC sites in the TP receptor impaired desensitization, and inhibitors of PKC

could block phosphorylation of the receptor. This is consistent with the present findings and suggests that PKC-dependent phosphorylation of the carboxyl terminus is an important mechanism for the regulation of prostanoid receptors.

Acknowledgments

We thank Todd L. Anthony for providing the GST/FP_A carboxyl terminal fusion protein; and Richard Premont and Mei Cong of the Lefkowitz laboratory (Duke University) for their help with the preparation and use of the FLAG-tagged receptors.

References

- Ali H, Fisher I, Haribabu B, Richardson RM and Snyderman R (1997) Role of phospholipase $C\beta 3$ phosphorylation in the desensitization of cellular responses to platelet-activating factor. *J Biol Chem* **272**:11706–11709.
- Anthony TL, Pierce KL, Stamer WD and Regan JW (1998) Prostaglandin F_{2a} receptors in the human trabecular meshwork. *Invest Ophthalmol Vis Sci* **39**:315–321. Freedman NJ and Lefkowitz RJ (1996) Desensitization of G protein-coupled receptors. *Recent Prog Horm Res* **51**:319–353.
- Graves PE, Pierce KL, Bailey TJ, Rueda BR, Gil DW, Woodward DF, Yool AJ, Hoyer PB and Regan JW (1995) Cloning of a receptor for prostaglandin $F_{2\alpha}$ from the ovine corpus luteum. *Endocrinology* **136**:3430–3436.
- Habib A, Vezza R, Creminon C, Maclouf J and FitzGerald GA (1997) Rapid, agonist-dependent phosphorylation in vivo of human thromboxane receptor isoforms. J Biol Chem 272:7191-7200.
- Hirata T, Ushikubi F, Kakizuka A, Okuma M and Narumiya S (1996) Two thromboxane A2 receptor isoforms in human platelets. *J Clin Invest* **97:**949–956.
- Negishi M, Sugimoto Y, Irie A, Narumiya S and Ichikawa A (1993) Two isoforms of prostaglandin E receptor EP3 subtype. J Biol Chem 268:9517–9521.
- Parent JL, Labrecque P, Orsini MJ and Benovic JL (1999) Internalization of the TXA $_2$ receptor α and β isoforms. J Biol Chem **274**:8941–8948.
- Pierce KL, Bailey TJ, Hoyer PB, Gil DW, Woodward DF and Regan JW (1997) Cloning of a carboxyl-terminal isoform of the prostanoid FP receptor. *J Biol Chem* **272**:883–887.
- Pierce KL and Regan JW (1998) Prostanoid receptor heterogeneity through alternative mRNA splicing. *Life Sci* **62:**1479–1483.
- Ryu SH, Kim UH, Wahl MI, Brown AB, Carpenter G, Huang KP and Rhee SG (1990) Feedback regulation of phospholipase C β by protein kinase C. *J Biol Chem* **265**: 17941–17945
- Smyth EM, Hong Li W and FitzGerald GA (1998) Phosphorylation of the prostacyclin receptor during homologous desensitization. *J Biol Chem* **273**:23258–23266.
- Spurney RF (1998) Role of C-terminal serines in desensitization and phosphorylation of the mouse thromboxane receptor. *J Biol Chem* **273**:28496–28503.

Send reprint requests to: John W. Regan, Ph.D., Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, 1703 E. Mabel St., Box 210207, Tucson, AZ 85721-0207. E-mail: regan@pharmacy.arizona.edu

